THE PRODUCTIVITY OF SLUDGE BANANA PEELS IN THE BIOFUELS

Authors

  • Dr. M. S. Ambatkar Head and Associate Professor Department of Zoology Vidya vikas Arts.Commerce and Science College. Samudrapur Dist:Wardha

DOI:

https://doi.org/10.17605/OSF.IO/49HGQ

Keywords:

methanogenesis, Saccharomyces cerevisiae, lactic acid fermentation, potentiometric ethanol

Abstract

Two separate batch processes were used to limit the amount of carbon and glycolysis produced by the effluent from banana fruit peel powder for 7–10 days in a co-culture of Candida niger and Staphylococcus subtilis oocytes, as well as a co-culture of Bacillus subtilis and Saccharomyces cerevisiae. To produce aerobic glycolysis in the third batch of brewing, Penicillium biomass -amylase protein is mixed with Saccharomyces cerevisiae. The reference electrode ethanol test may be used to determine the entire ethanol yield from the ethanol generated by the fractionating column procedure. Fermentation and production techniques provide ethanol yields of 6.34, 4.6, and 11.73 percent correspondingly.

Downloads

Download data is not yet available.

References

Oberoi Harinder Singh. Ethanol Production from Banana Peels Using Statistically Optimized Simultaneous Saccharification and Fermentation Process. Waste Manag. 2011; 1576– 1584p.

Singh Ajay Kumar. Bio-Ethanol Production from Banana Peel by Simultaneous Saccharification and Fermentation Process Using Co-Cultures Aspergillus niger and Saccharomyces cerevisiae. Int J Curr Microbiol Appl Sci. 2014; 3(5): 84–96p.

Mazlan MF. Optimization of Ethanol Production from Waste Bananas. University of Technology Petronas; 2013.

Emaga TH. Dietary Fiber Component and Pectin Chemical Features of Peels during Ripening in Banana and Plantain Varieties. Bioresour Technol. 2008; 99: 4346–4354p.

Sukamaran RK, et al. Lignocellulosic Ethanol in India: Prospects, Challengesand Feedstock Availability. Bioresour Technol. 2010; 101: 4826–4833p.

Agricultural Research Data Book. New Delhi: Indian Agricultural Statistics Research Institute; 2004.

Martínez-Ruano, J.A.; Caballero-Galván, A.S.; Restrepo-Serna, D.L.; Cardona, C.A. Techno-economic and environmental assessment of biogas production from banana peel (Musa paradisiaca) in a biorefinery concept. Env. Sci. Pollut. Res. 2018, 25, 35971–35980. [CrossRef] [PubMed]

Gumisiriza, R.; Hawumba, J.F.; Okure, M.; Hensel, O. Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda. Biotechnol. Biofuels 2017, 10, 11. [CrossRef] [PubMed]

Kamm, B.; Kamm, M.; Gruber, P.R.; Kromus, S. Biorefineries-Industrial Processes and Products; Kamm, B., Gruber, P.R., Kamm, M., Eds.; Wiley: Hoboken, NJ, USA, 2005; ISBN 9783527310272.

De Corato, U.; De Bari, I.; Viola, E.; Pugliese, M. Assessing the main opportunities of integrated

Fava, F.; Totaro, G.; Diels, L.; Reis, M.; Duarte, J.; Carioca, O.B.; Poggi-Varaldo, H.M.; Ferreira, B.S. Biowaste biorefinery in Europe: Opportunities and research & development needs. N. Biotechnol. 2015, 32, 100–108. [CrossRef]

Rojas Alfaro, J.J.; Fernández Araya, L.M.; Redondo-Gómez, C.; Vega-Baudrit, J. Bio Refinery of Oily Wastes. Org. Med. Chem. Int. J. 2018, 6, 1–7. [CrossRef]

Banerjee, A.; Bhaskar, T.; Ghosh, D. A biorefinery approach for sewage sludge. In Waste Biorefinery; Elsevier: Amsterdam, The Netherlands, 2020; pp. 293–421.

Pérez, V.; Pascual, A.; Rodrigo, A.; García Torreiro,M.; Latorre-Sánchez,M.; Coll Lozano, C.; David-Moreno, A.; Oliva-Dominguez, J.M.; Serna-Maza, A.; Herrero García, N.; et al. Integrated innovative biorefinery for the transformation of municipal solid waste into biobased products. In Waste Biorefinery; Elsevier: Amsterdam, The Netherlands, 2020; pp. 41–80.

Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sci. 2014, 7, 163–173. [CrossRef]

Cardoso Araújo, D.J.; Machado, A.V.; Lobo Guerra Vilarinho, M.C. Availability and Suitability of Agroindustrial Residues as Feedstock for Cellulose-Based Materials: Brazil Case Study. Waste Biomass Valorization 2019, 10, 2863–2878. [CrossRef]

Tock, J.Y.; Lai, C.L.; Lee, K.T.; Tan, K.T.; Bhatia, S. Banana biomass as potential renewable energy resource: A Malaysian case study. Renew. Sustain. Energy Rev. 2010, 14, 798–805. [CrossRef]

Pisutpaisal, N.; Boonyawanich, S.; Saowaluck, H. Feasibility of Biomethane Production from Banana Peel. Energy Procedia 2014, 50, 782–788. [CrossRef]

Yang, X.; Choi, H.S.; Park, C.; Kim, S.W. Current states and prospects of organic waste utilization for biorefineries. Renew. Sustain. Energy Rev. 2015, 49, 335–349. [CrossRef]

Sommer, S.G.; Hamelin, L.; Olesen, J.E.; Montes, F.; Jia, W.; Chen, Q.; Triolo, J.M. Agricultural waste biomass. In Supply Chain Management for Sustainable Food Networks; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 67–106.

Padam, B.S.; Tin, H.S.; Chye, F.Y.; Abdullah, M.I. Banana by-products: An under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 2014, 51, 3527–3545. [CrossRef]

Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Valorization of banana peel: A biorefinery approach. Rev. Chem. Eng. 2016, 32. [CrossRef]

Cutz, L.; Haro, P.; Santana, D.; Johnsson, F. Assessment of biomass energy sources and technologies: The case of Central America. Renew. Sustain. Energy Rev. 2016, 58, 1411–1431. [CrossRef]

Downloads

Published

2020-01-10

How to Cite

[1]
Dr. M. S. Ambatkar, “THE PRODUCTIVITY OF SLUDGE BANANA PEELS IN THE BIOFUELS”, IEJRD - International Multidisciplinary Journal, vol. 5, no. 1, p. 6, Jan. 2020.

Issue

Section

Articles